
Google: Adrian Horzyk
Adrian Horzyk

horzyk@agh.edu.pl

AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Department of Biocybernetics and Biomedical Engineering

mailto:horzyk@pwsz.krosno.pl
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

2

http://home.agh.edu.pl/~horzyk/index-eng.php

Recurrent Networks for Sequences

Sequencial data are usually processed using recurrent neural networks (RNNs)
of various kinds (e.g. GRU or LSTM):

but we can also use many other approaches.

Sometimes we can also use convnets when the data sequence
is not so important as the elements used in these sequences are.

One of such problems is the IMDB sentiment classification task where
the positive or negative classification depends more on the used words in
the sentences than on the sequential relationships.

3

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Sequence Processing
The sequences can be processed using different approaches:

4

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

5

http://home.agh.edu.pl/~horzyk/index-eng.php

1D Convnet Layers in Keras

In Keras, we use a 1D convnet via the Conv1D layer, which takes as input 3D tensors
with shape (samples, time, features) and also returns similarly-shaped 3D tensors.

The convolution window is a 1D window on the temporal axis.

1D convnets are structured in the same way as their 2D counter-parts and have a very
similar interface to Conv2D. They consist of a stack of Conv1D and MaxPooling1D layers,
eventually ending in either a global pooling layer (GlobalMaxPooling1D) or a Flatten
layer, turning the 3D outputs into 2D outputs, allowing to add one or more Dense layers
to the model, for classification or regression.

We can afford (taking into account the computing time) to use larger convolution
windows with 1D convnets.

Indeed, with a 2D convolution layer, a 3x3 convolution window contains 3*3 = 9 feature
vectors, while with a 1D convolution layer, a convolution window of size 3 would only
contain 3 feature vectors.

Thus, we can easily afford 1D convolution windows of size 5, 7, 9, or even more.

6

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

1D Convnet Network for IMDB

Let's build a simple 2-layer 1D convnet applied to the IMDB sentiment classification
task that we are already familiar with:

7

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Machine Learning

We can combine 1D convolutional layers with GRU or LSTM layers:

8

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

9

http://home.agh.edu.pl/~horzyk/index-eng.php

Recurrent Memory Limitations

Recurrent memories suffer from a limited size of the used reference windows:

• RNN can use only short reference windows,

• GRU and LSTM can use longer reference windows than RNN, but still limited,

• Attention Mechanism uses unlimited reference windows:

10

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Attention Mechanism

Attention Mechanism used by Transformers:

• use an infinite reference window, so the context can be take from
the entire text, not only from the short reference window as RNN allow for
or long reference window as GRU or LSTM allow for.

• enables a transformer model to focus on all previous tokens that have been
generated, so it does not suffer from short term memory.

• Our input: “As Aliens entered our planet”

• Transformer output: “and began to colonized Earth, a certain group of extraterrestrials began to manipulate
our society through their influences of a certain number of the elite to keep and iron grip over the populace.”

11

https://arxiv.org/abs/1706.03762
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Transformers

Transformers are taking the NLP world by storm, breaking multiple
NLP records and outperforming many previous kings of sequence
processing models line RNN, GRU or LSTM:

• Famous transformers models like BERT (Bidirectional Encoder Representation
form Transformers), GPT or GPT2 (Generative Pre-Training).

12

https://arxiv.org/abs/1706.03762
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Transformers’ Network and Model

13

Encoder Decoder

Network consists of:

• Encoder that maps an input
sequence into an abstract
continuous representation
that holds all the learned
information of that input.

• Decoder that takes the
continuous representation
and step by step generates
a single output while also
being fed the previous output.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Input Positional Embedding

1. The input is fed into a word embedding layer, which
is like a lookup table to grab a learned continuous-
values vector representation of each word:

2. The position about the word position is added to
the representation of the word embeddings:

14

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Positional Encoding and Embeddings

Transformers do not use recurrence so the information about
the position of words must be added to the word input embeddings:

• For odd positions, we use cosine function

• For even positions, we use sine function

15

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Encoder Layer Subnetwork

16

Encoder Layer Subnetwork:

• Maps all the input sequences to the abstract,
continuous representation that holds
the learned information for the entire sequences:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Multi-headed Attention Module

Multi-headed Attention Module:

• Is a network computing the attention
weights from the input and producing
the output vectors that encoded information
on how each word should attend to
each word in the input sequence.

17

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Multi-headed Attention

18

Multi-headed Attention consists of:

• Self-Attention which allows to associate
each individual word in the input
to the other words in the input:

The search engines
usually map the
query against a set of
keys associated with
candidates, from
which the best (with
the highest matching
values) are finally
presented:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Scoring and Scaling

19

Multiplying → Scaling → SoftMax:

During the SoftMax, the highest
scores are heightened and
the lowest scores are depressed:

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Multiplying the Attention Weights

20

Encoding Mechanism

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Residual Connections and Normalization

21

P
o

in
tw

is
e

 F
e

e
d

 F
o

rw
ar

d

All of these operations
are to encode the input
to a continuous
representation with
attention information.

The residual connections
help the network train
by allowing gradients to
flow through the
networks directly.

The layer normalizations
stabilize the network
which results
in substantially reducing
the training time
necessary.

The pointwise
feedforward layer is
used to project
the attention outputs
potentially giving it
a richer representation.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Residual Connections and Normalization

22

We can also stack
encoders N-times
to further encode
the information.

Each layer has
the opportunity
to learn different
attention
representations
boosting
the potential
power of
the attention
network.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Decoding Transformer’s Subnetwork

The decoder
• generates text sequences;

• has a similar sub-layer as the encoder;

• is autoregressive, i.e. it begins
with a start token and takes in
a list of previous outputs as inputs, as well as
the encoder outputs that contain the attention
information from the input. The decoder stops
decoding when it generates a token as an
output.

• has two multi-headed attention layers,
a pointwise feed-forward layer, residual
connections, and layer normalization
after each sub-layer.
These sub-layers behave similarly to the layers
in the encoder but each multi-headed attention
layer has a different job. The decoder is capped
off with a linear layer that acts as a classifier,
and a softmax to get the word probabilities.

23

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Decoding Layers

The decoder’s multi-headed attention
layer cannot conditioning to future tokens.

It is autoregressive and generates
the sequence word by word:

24

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Look-Ahead Masking

The mask is a matrix of the same size as the attention
scores filled with values of 0’s and negative infinities.
When we add the mask to the scaled attention scores,
you get a matrix of the scores, with the top right
triangle filled with negativity infinities. 25

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Decoder 2nd Multi-Headed Attention

• The output of the second multi-headed
attention goes through a pointwise
feedforward layer for further processing.

• For the second multi-headed attention layer,
the encoder’s outputs are the queries and
the keys, and the first multi-headed attention
layer outputs of the decoder are the values.

• This process matches the encoder’s input to
the decoder’s input, allowing the decoder to
decide which encoder input is relevant to put
a focus on.

• The output of the first multi-headed attention
is a masked output vector with information on
how the model should attend on the decoder’s
input.

• This layer still has multiple heads that
the mask is being applied to, before getting
concatenated and fed through
a linear layer for further processing.

26

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Decoder’s Final Classification

The output of the final pointwise feedforward layer
goes through a final linear layer that acts as a classifier.
The classifier is as big as the number of classes you
have, e.g. 10,000 output for 10,000 words.

27

Then, the output of the classifier gets fed into
a softmax layer, which will produce probability
scores between 0 and 1.

Finally, we take the index of the highest probability
score, and that equals our predicted word.

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Stacking Decoders

The decoder then takes the output, adds it to the list of
decoder inputs, and continues decoding again and again
until a token is predicted.

For our case, the highest probability prediction is
the final class which is assigned to the <end> token.

The decoder can also be stacked N layers high, each layer
taking in inputs from the encoder and the layers before it.

By stacking the layers, the model can learn to extract and
focus on different combinations of attention from its
attention heads, potentially boosting its predictive power.

28

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

29

http://home.agh.edu.pl/~horzyk/index-eng.php

30

http://home.agh.edu.pl/~horzyk/index-eng.php

Final Presentations

Remarks for the final presentations:

• Each final presentation should be presented in about 5 minutes + 2 minutes
for the discussion.

• Try to inspire us and show what you have learned and what was interesting
in the problem you solved.

• Share your knowledge and experience gained.

• Focus on the most essential things of your topic, model, results, and solution.

• Show us the difficulties where we could stack when solving similar problems.

• Describe the most important hyperparameters and how you found out those
which were finally the most efficient in your case.

• Try to compare your solution and results to the other solutions and results
you found on the Internet or research papers.

• Interpret and summarize results and your achievements.

• Don’t forget to send your final project source codes with or plus presentation
using MS Teams for final evaluation!

31

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
http://home.agh.edu.pl/~horzyk/lectures/ahdydci.php
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

