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Recurrent Networks for Sequences

Sequencial data are usually processed using recurrent neural networks (RNNs) 
of various kinds (e.g. GRU or LSTM):

but we can also use many other approaches.

Sometimes we can also use convnets when the data sequence 
is not so important as the elements used in these sequences are. 

One of such problems is the IMDB sentiment classification task where 
the positive or negative classification depends more on the used words in 
the sentences than on the sequential relationships.
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Sequence Processing
The sequences can be processed using different approaches:
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1D Convnet Layers in Keras

In Keras, we use a 1D convnet via the Conv1D layer, which takes as input 3D tensors 
with shape (samples, time, features) and also returns similarly-shaped 3D tensors. 

The convolution window is a 1D window on the temporal axis.

1D convnets are structured in the same way as their 2D counter-parts and have a very 
similar interface to Conv2D. They consist of a stack of Conv1D and MaxPooling1D layers, 
eventually ending in either a global pooling layer (GlobalMaxPooling1D) or a Flatten 
layer, turning the 3D outputs into 2D outputs, allowing to add one or more Dense layers 
to the model, for classification or regression.

We can afford (taking into account the computing time) to use larger convolution 
windows with 1D convnets.

Indeed, with a 2D convolution layer, a 3x3 convolution window contains 3*3 = 9 feature 
vectors, while with a 1D convolution layer, a convolution window of size 3 would only 
contain 3 feature vectors.

Thus, we can easily afford 1D convolution windows of size 5, 7, 9, or even more.
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1D Convnet Network for IMDB

Let's build a simple 2-layer 1D convnet applied to the IMDB sentiment classification 
task that we are already familiar with:

7

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Machine Learning

We can combine 1D convolutional layers with GRU or LSTM layers:
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Recurrent Memory Limitations

Recurrent memories suffer from a limited size of the used reference windows:

• RNN can use only short reference windows,

• GRU and LSTM can use longer reference windows than RNN, but still limited,

• Attention Mechanism uses unlimited reference windows:

10

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php


Attention Mechanism

Attention Mechanism used by Transformers:

• use an infinite reference window, so the context can be take from 
the entire text, not only from the short reference window as RNN allow for 
or long reference window as GRU or LSTM allow for.

• enables a transformer model to focus on all previous tokens that have been 
generated, so it does not suffer from short term memory.

• Our input: “As Aliens entered our planet”

• Transformer output: “and began to colonized Earth, a certain group of extraterrestrials began to manipulate 
our society through their influences of a certain number of the elite to keep and iron grip over the populace.”
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Transformers

Transformers are taking the NLP world by storm, breaking multiple 
NLP records and outperforming many previous kings of sequence 
processing models line RNN, GRU or LSTM:

• Famous transformers models like BERT (Bidirectional Encoder Representation 
form Transformers), GPT or GPT2 (Generative Pre-Training).
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Transformers’ Network and Model
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Encoder Decoder

Network consists of:

• Encoder that maps an input 
sequence into an abstract 
continuous representation 
that holds all the learned 
information of that input.

• Decoder that takes the 
continuous representation 
and step by step generates 
a single output while also 
being fed the previous output.
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Input Positional Embedding

1. The input is fed into a word embedding layer, which 
is like a lookup table to grab a learned continuous-
values vector representation of each word:

2. The position about the word position is added to 
the representation of the word embeddings:
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Positional Encoding and Embeddings

Transformers do not use recurrence so the information about 
the position of words must be added to the word input embeddings:

• For odd positions, we use cosine function

• For even positions, we use sine function
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Encoder Layer Subnetwork
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Encoder Layer Subnetwork:

• Maps all the input sequences to the abstract,
continuous representation that holds 
the learned information for the entire sequences:  
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Multi-headed Attention Module

Multi-headed Attention Module:

• Is a network computing the attention 
weights from the input and producing 
the output vectors that encoded information 
on how each word should attend to 
each word in the input sequence.
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Multi-headed Attention
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Multi-headed Attention consists of:

• Self-Attention which allows to associate 
each individual word in the input 
to the other words in the input:

The search engines 
usually map the 
query against a set of 
keys associated with 
candidates, from 
which the best (with 
the highest matching 
values) are finally 
presented:
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Scoring and Scaling
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Multiplying → Scaling → SoftMax:

During the SoftMax, the highest 
scores are heightened and 
the lowest scores are depressed:
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Multiplying the Attention Weights
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Encoding Mechanism
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Residual Connections and Normalization
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All of these operations 
are to encode the input 
to a continuous 
representation with 
attention information.

The residual connections 
help the network train 
by allowing gradients to
flow through the 
networks directly. 

The layer normalizations 
stabilize the network 
which results 
in substantially reducing 
the training time 
necessary.

The pointwise 
feedforward layer is 
used to project 
the attention outputs 
potentially giving it 
a richer representation.
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Residual Connections and Normalization
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We can also stack 
encoders N-times 
to further encode 
the information.

Each layer has 
the opportunity 
to learn different 
attention 
representations 
boosting 
the potential 
power of 
the attention 
network.
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Decoding Transformer’s Subnetwork

The decoder
• generates text sequences;

• has a similar sub-layer as the encoder;

• is autoregressive, i.e. it begins
with a start token and takes in
a list of previous outputs as inputs, as well as 
the encoder outputs that contain the attention 
information from the input. The decoder stops 
decoding when it generates a token as an 
output.

• has two multi-headed attention layers,
a pointwise feed-forward layer, residual 
connections, and layer normalization 
after each sub-layer. 
These sub-layers behave similarly to the layers 
in the encoder but each multi-headed attention 
layer has a different job. The decoder is capped 
off with a linear layer that acts as a classifier, 
and a softmax to get the word probabilities.
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Decoding Layers

The decoder’s multi-headed attention 
layer cannot conditioning to future tokens.

It is autoregressive and generates 
the sequence word by word:
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Look-Ahead Masking

The mask is a matrix of the same size as the attention 
scores filled with values of 0’s and negative infinities. 
When we add the mask to the scaled attention scores, 
you get a matrix of the scores, with the top right 
triangle filled with negativity infinities. 25
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Decoder 2nd Multi-Headed Attention

• The output of the second multi-headed 
attention goes through a pointwise 
feedforward layer for further processing.

• For the second multi-headed attention layer, 
the encoder’s outputs are the queries and 
the keys, and the first multi-headed attention 
layer outputs of the decoder are the values.

• This process matches the encoder’s input to 
the decoder’s input, allowing the decoder to 
decide which encoder input is relevant to put 
a focus on. 

• The output of the first multi-headed attention 
is a masked output vector with information on 
how the model should attend on the decoder’s 
input.

• This layer still has multiple heads that 
the mask is being applied to, before getting 
concatenated and fed through 
a linear layer for further processing. 
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Decoder’s Final Classification

The output of the final pointwise feedforward layer 
goes through a final linear layer that acts as a classifier. 
The classifier is as big as the number of classes you 
have, e.g. 10,000 output for 10,000 words.
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Then, the output of the classifier gets fed into 
a softmax layer, which will produce probability 
scores between 0 and 1. 

Finally, we take the index of the highest probability 
score, and that equals our predicted word.
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Stacking Decoders

The decoder then takes the output, adds it to the list of 
decoder inputs, and continues decoding again and again 
until a token is predicted.

For our case, the highest probability prediction is 
the final class which is assigned to the <end> token.

The decoder can also be stacked N layers high, each layer 
taking in inputs from the encoder and the layers before it.

By stacking the layers, the model can learn to extract and 
focus on different combinations of attention from its 
attention heads, potentially boosting its predictive power.
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Final Presentations

Remarks for the final presentations:

• Each final presentation should be presented in about 5 minutes + 2 minutes 
for the discussion.

• Try to inspire us and show what you have learned and what was interesting 
in the problem you solved.

• Share your knowledge and experience gained.

• Focus on the most essential things of your topic, model, results, and solution.

• Show us the difficulties where we could stack when solving similar problems.

• Describe the most important hyperparameters and how you found out those
which were finally the most efficient in your case.

• Try to compare your solution and results to the other solutions and results 
you found on the Internet or research papers.

• Interpret and summarize results and your achievements.

• Don’t forget to send your final project source codes with or plus presentation 
using MS Teams for final evaluation!
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